Skip to main content

A Green Light for Muni Customers

A Green Light for Muni Customers
By Stephen Chun

Have you ever been on a Muni vehicle and realized that if the light had only stayed green for just a few more seconds you wouldn’t have been trapped at a red light? SFMTA’s Connected Corridor Pilot approached this problem with a new state of the art solution.  

Most signals in San Francisco do not have sensors to detect vehicles at an intersection. However, through a grant from the U.S. Department of Transportation, our project team was able to test an advanced technology for signal timing based on who is present at an intersection. In this way, transit platform and traffic signal sensor data can be used to activate signal timing adjustments, responding to traffic conditions in real time. These adjustments provide more opportunities for transit vehicles to make it through intersections on a green light.   

The project team turned on the adaptive signal timing program during several days in July and August 2021, with traffic engineers and traffic signal electricians monitoring intersections both in-person and by observing traffic cameras. Our priority was to reduce transit vehicle travel times. Once in place, we compared travel times for trains both before and after the new technology was implemented.  

We found that with our pilot project, the average light rail vehicle (LRV) travel time along the 1-mile corridor was reduced by 66 seconds, resulting in an average travel speed increase of 21% from 8.2 miles per hour (MPH) to 9.9 MPH. With this system, the chance that a train will reach an intersection on a green light improved from 62.1% to 85.8%, meaning almost no red-light delay.     

Connected Corridor - Pilot Performance, Before and After Comparisons

Figure 1. Pilot Corridor Performance, Before and After Comparisons 

During the pilot, 60% of LRV corridor trips had 10 seconds or less of red-light delay, compared to only 5% previously.  In fact, 20% of trains saw no red-light delay at all on the corridor, compared to the previous study period when not a single train avoided red light delay entirely.   

Improving signal timing for just one specific mode or direction can potentially result in negative impacts for others.  To evaluate this, we measured travel impacts to pedestrians and non-Muni vehicles to evaluate the potential effects from prioritizing transit.  Fortunately, our data show that there was a 1% increase in the overall odds that other vehicles would encounter a green light and only a 1% increase in the odds that pedestrians would reach an intersection on a Do Not Walk symbol. 

Vehicles on side streets were generally unaffected unless they were also held to prioritize train through traffic. Heavier volume side streets such as Mariposa Street had increased average wait times of up to 78% for vehicles, from an average wait of 46 seconds previously, to an average wait of 87 seconds during the pilot. Fortunately, the adaptive signal system only increased the average wait time by 4 seconds for pedestrians if they arrived on a Do Not Walk symbol, from 22 seconds to 26 seconds.  Further refinement of the signal timing logic could help address these concerns. 

With detailed information collected through the advanced sensors, our project team was able to make refinements and real-time signal timing adjustments that account for time of day, direction of travel, and the real-time volume of pedestrians, vehicles, and transit vehicles.  

These promising results will lead the SFMTA to consider applying this technology in other locations to better understand how the system could work more widely around the city and any trade-offs that could arise in regard to overall traffic flows. 

Looking forward, we are also exploring other new technologies. For example, the LiDAR (sensors that use lasers to identify objects) used in this project provides a new way to capture and classify objects at intersections, but there may be a need for additional sensors or different mounting locations to improve detection accuracy. Project staff will build upon the lessons learned from the pilot to inform future efforts to optimize the signal timing to make our streets better for all users.   

 



Published December 01, 2021 at 03:01AM
https://ift.tt/31fWtr4

Comments

Popular posts from this blog

Show HN: Tape It, iOS recording app for musicians https://ift.tt/3udBTSi

Show HN: Tape It, iOS recording app for musicians Hello HN, Over the last 15 months, two friends and I developed the music recording app we felt we wanted based on our own needs as musicians. It's called Tape It [1] and has just recently hit the Apple App Store [2]. We put a lot of effort into a good UX to help musicians really focus on playing their instrument instead of pretending to be a recording engineer. The app records in stereo on newer iPhones (although that's a premium feature; the free version only records in standard mono audio quality). I would be really grateful for advice from this community on how to best approach marketing. We had a great TechCrunch article covering our launch [3], and we posted it on various music websites. Turns out advertising on Google or Apple Search is a dark art, though. We have some good ideas for developing a good social media presence, but they will take time. Please hit us with feedback, opinions and advice that you think a young ind...

Show HN: Moderator,lightweight peer4peer anon forum https://ift.tt/3fZSDGl

Show HN: Moderator,lightweight peer4peer anon forum hello all! here's a link to my little pinteresting like forum that stores no data on the server and uses IPFS for image storage. The design aesthetic is that everything would in 64kb of memory so we're going for a collapse-proof low bandwidth experience. this makes moderator really fast. https://moderator.rocks is the web preview, a flutter client is in the works at https://ift.tt/32wqdRb take a look, post something fun, ask questions. I'm also on twitter @moderatorium in case interested. Have fun! January 26, 2022 at 12:23AM

Show HN: Comment on live websites just like you comment on Google Docs/Figma https://ift.tt/GRhrjX0

Show HN: Comment on live websites just like you comment on Google Docs/Figma I'd love your feedback on this new JS plugin we launched. With this, you can comment on live websites just like you comment on Google Docs or Figma. You can use is to get Copy or UI feedback right on the website you are building. Feedback can be provided in rich formats like audio and video. You can get started by installing a JS tag in the footer of the website. You can then turn the review mode on or off on demand by adding “?review=true” to the URL. Demo video (43s): https://www.youtube.com/watch?v=cdnfBEw8TfI Demo video: https://www.youtube.com/watch?v=h6vxzXJuh8o https://ift.tt/ocLpdEu October 26, 2022 at 02:18AM